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This paper studies numerically the instabilities and quasi-steady states of thermal 
convection in a Boussinesq fluid within a unit square which is bounded rigidly on 
all sides, differentially heated on the bottom, insulated above, and rotating about 
a vertical axis. The flows for five ascending values of the thermal Rossby number 
/3 are studied for constant Prandtl number cr and infinitesimal Ekman number E. For 
small values of p, either transient or stationary spatial oscillations occur. The results 
agree with Daniels’ (1976) and Daniels t Stewartson’s (1977,1978) linear and weakly 
nonlinear theories in principle if not in detail. For large values of #?, the flows are 
highly nonlinear. They undergo two distinct stages of instability and eventually settle 
down to steady states. It is shown that a viscous non-diffusive boundary layer can 
exist at steady state for large p. For the maximum value of /3 under investigation, 
only quasi-steady states have been reached in the interior. Inertial gravity waves are 
observed emanating from the unstable corner of the fluid. These numerical solutions 
establish that the initial instability is an exchange instability rather than a 
catastrophic one. The question of bifurcation has not been resolved. 

1. Introduction 
Daniels (1976) and Daniels & Stewartson (1977, 1978) (hereinafter referred to as 

D & S), investigated analytically the axisymmetric motion of a rigidly bounded 
rotating annulus heated differentially on the bottom while all the upper boundaries 
are thermally insulated. These authors extensively investigated the flows for infini- 
tesimal Ekman number E, for small thermal Rossby number /3, and for Prandtl 
number cr of order unity or larger (these parameters will be defined below). They 
found that for vanishingly small thermal Rossby number, heat transport in the 
interior is by conduction. The resulting circulation in the meridional (cross-sectional) 
plane consists of I$ Ekman layers near the top and bottom boundaries, Stewartson- 
Proudman layers on the vertical sidewalls, and small but uniform vertical flows in 
the interior. As the thermal Rossby number increases, the Ii$ layer in the hot side 
of the fluid becomes spatially oscillatory. It does not decay with distance from the 
boundary ; instead, it penetrates into the interior in the form of cellular motion which 
can be interpreted as BBnard convection. The problem, however, is much more 
complicated than the classical BBnard problem. For example, because the container 
is tall, the convection cells can have multiple vertical wavenumbers. In addition, 
non-uniform heating in the horizontal always maintains some non-trivial state of 
motion which makes this problem fundamentally different from the BBnard problem 
whose basic state is one of no motion. 
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Hignett, Ibbetson & Killworth (1981) studied the problem experimentally. Unfor- 
tunately, they did not report on the transient flows. However, in spite of the 
differences between the boundary conditions applied in their experiments and in our 
computations, our numerical solutions presented below agree, at least qualitatively, 
with their observations on the steady states. The authors of all these studies have 
discussed certain similarities between the flows of the present problem and those of 
some large-scale geophysical phenomena such as zonally averaged oceanic and 
planetary atmospheric circulations. A similar convection problem without rotation, 
which was studied by Stommel (1962), by Rossby (1965), and later by Killworth & 
Manins (1980), was indeed motivated by the question of small sinking regions in the 
world oceans. 

Some related problems have also been studied numerically on both planetary and 
laboratory scales. Beardsley & Festa (1972) studied the flows in a similar, but 
non-rotating configuration with an impressed surface stress. Kalnay de Rivas (1973) 
had studied a hydrostatic model of the zonally averaged Venusian atmosphere. 
Although her model is very similar to the present one, the hydrostatic assumption 
in her model deprived her study of much of the intricate and interesting flow 
phenomena that are inherent in this problem. Quon (1980, 1981) studied a more 
complex problem with both the upper and lower boundaries differentially heated. In 
retrospect, many aspects of the transient behaviour of that problem are very similar 
to what is to be described below. The present work is indeed a logical outgrowth of 
these earlier studies. 

In  this paper, we shall focus on the fundmentals of various modes of motion in the 
system rather than on its possible geophysical applications. As we shall see, the 
richness of its full range of phenomena justifies a rigorous fluid-dynamical study. We 
shall first define the problem, then briefly review the method of solution and some 
previous works. The numerical results will then follow. This study covers a wide range 
of thermal Rossby numbers. The Prandtl number is kept constant while the Ekman 
number kept small. 

2. Statement of the problem 
The physical system consists of a unit square as depicted in figure 1,  which can 

be considered as the cross-section of an infinite channel, or that of an annulus of fluid 
with negligible annulus gap to radius ratio. The upper boundaries of the square are 
rigid and thermally insulated. The bottom boundary is maintained at temperatures 
varying with distance from the sidewalls. The whole system rotates about a vertical 
axis. We shall impose a Cartesian coordinate X = (x, y, z) a~ shown in figure 1, and 
designate a velocity vector V = (u, v ,  w) .  After non-dimensionalization with 
characteristic velocity U = 251L, length L, and temperature AT, where 51 is the 
rotation rate, L the width and height of the square cross-section, and AT the 
maximum imposed temperature difference, the two-dimensional governing equations 
are 

au au au aP -i-u-+w--v = ----+EVau, at ax az ax 

av av av 
-+u-+w-i-u = m z v ,  at ax aZ 

aw aw aw ap 
at ax az aZ -i-u-+w-= --++T+EVaw, 
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V = 0 on all boundaries 

0 
T ( X )  = t COS ( K X )  

aT -- ax-' 

- 
X 

FIGURE 1. The physical system and boundary conditions. 

div V = 0, 

with the following boundary conditions : 

V = 0 on all boundaries, 

_ -  - 0 i3T 
an 

on all boundaries except the bottom, 

T = T(x) = + cosm on the bottom, I 
where a/an denotes the normal gradient on the boundaries. The dimensionless 
parameters are 

2, 
E = -  Ekman number, (2 .7a)  

2DLZ 

B=m qAT Thermal Rossby number, (2.7 b)  

( 2 . 7 ~ )  
V 

K 
u = - Prandtl number, 

where v and K are respectively the kinematic viscosity and thermal diffusivity, a the 
coefficient of volumetric expansion, and g the Earth's gravity. An external Rayleigh 
number can be defined as follows: 

(2.8a) 

Note that Ra is based on an externally imposed vertical temperature gradient AT/H 
and an external lengthscale L. We shall have to consider an internal Rayleigh number 
Ra defined as 

(2.8b) 
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where i3T/az is a typical dimensionless internal vertical temperature gradient and 1 
some dimensionless internal lengthscale. Note that both these quantities depend 
implicitly on the rotation rate and some other parameters of the system. Thus Ra, 
in (2.8b) depends on a, although Ra in ( 2 . 8 ~ )  does not. 

In this study the Ekman number will be kept small, O(lO-*), and B = 10 and /3 
will vary from infinitesimal to O(1). Small E ensures a geostrophic interior. The 
parameters of five case studies are given in table 1. 

3. Method of solution 
Equations (2.1)-(2.6) have been solved by a finite-difference method on a trans- 

formed coordinate. The transformation has been chosen such that there are more grid 
points in the boundary region where the fields vary more rapidly than in the interior. 
The advantage of using transformed coordinates instead of other methods of mesh 
refinement is that the transform function can be changed at will to suit the 
requirement of each problem. For example, the same general algorithm used here for 
side-boundary-layer computation can be used to study internal boundary layers just 
by changing the transform function to yield grid refinement in the interior instead 
of the sidewalls. The disadvantage is that we have to solve a set of much more 
complicated equations where the spatial derivatives are replaced by derivatives in 
the transformed space with known, but nevertheless variable, coefficients. The 
essence of the method is as follows. 

With the transformation x+E(x) ,  z+y(z), (2.1)-(2.5) become 

au a t  aP 
at ax ag - + V . A u - v = - - + E L u ,  

(3.2) 
av 
at 
- + V . A V + U = + E L V ,  

aw -+ V . A ~  = - W + E L w + p T ,  at a Z  a7 

V .  AT = -LT, c7 
aT E 
-+ at 

(3.3) 

(3.4) 

A . V = O ,  (3.5) 

where 

A diagnostic pressure equation is formed by operating on (3.1) with (ay/ax) (a/ay) 
and on (3.3) with (ag/az) @/at) and adding the resulting equations: 

a 
at 

Lp = - - A  . V+&(U, V ,  W, t ) ,  

where &(u,v,w, t )  consists of the rest of the terms in (3.1) and (3.3) after 
differentiation. 

Equation (3.6) is elliptic with variable coefficients. Although A . V = 0 is assumed 
in differential form, it does not vanish completely in finite-difference form because 
of truncation errors. Hence the first term in the right-hand side of (3.6) is non-zero, 
and unfortunately is also unknown because the time derivative requires A .  V of the 
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FIQURE 2. Symmetric and asymmetric grid distributions. The parameter d = 0.02 for symmetric 
transformation in the vertical for (a) and (a); d = 0.15 for symmetric transformation in the 
horizontal (a), and d = 0.05 for the asymmetric transformation (b) .  The nets consist of 42 x 42 grid 
points. 

next time level. As the best approximation, A .  V in the future time-step is forced 
to be zero in the computation for p in (3.6). A detailed exposition of the finite-dif- 
ference procedure is given in Quon (1976). The same algorithm used for numerical 
computation here has been used to solve a few rotating and non-rotating convection 
problems successfully (Quon 1976, 1977, 1980, 1981, 1983~) .  

Two-different transform functions have been used respectively for infinitesimal 
and large p. When p is infinitesimal, the flow fields and temperature field are either 
symmetric or antisymmetric about x = i, and hence a symmetric transform function 
is used for the horizontal-coordinate transform. For larger values of p, the flow fields 
have a very narrow and intense boundary layer on only one vertical boundary. Hence 
a transform function that is symmetric about x = 1 and has fine grids near x = 0 is 
used in the horizontal direction. Symmetric vertical transform functions are used for 
all cases because Ekman layers are expected near both the upper and lower 
boundaries. These transform functions are respectively 

(a) symmetric 

O < x < l ;  
0.25 

b2 = - 
1-2d’ 

(b) asymmetric 

where d is a controlling parameter. For convenience, Nand [ are chosen to be integers 
and 1 Q 6 Q N for 0 Q x Q 1. The smaller d is, the more grid points are packed into 
the boundary layers. Two examples are given in figure 2. A detailed discussion of the 
symmetric transformation function is given in Roberts (1971) and Quon (1976). Since 
the asymmetric transform function is essentially an adaptation of the symmetric 
function to a special circumstance, these discussions apply to both. 
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The finite-difference scheme is second-order accurate in space and in time. Because 
of non-uniform grid spacings, the truncation errors are necessarily non-uniform in 
space. As we shall see later, it is very difficult to assess the absolute accuracy of the 
solutions for a problem aa complex as the present one. The algorithm used to produce 
the results presented here has been severely tested in some other areas of study (Quon 
1976, 1983a). 

4. Results of linear and weakly nonlinear theories 
If pis sufficiently small, it is convenient to scale the velocity with 2SaLb. Neglecting 

the inertial terms that are O($), and introducing a stream function !?'such that 
u = -aY/az,  and w = a!?'/ax we can obtain the following from (2): 

If up is also sufficiently small, the left-hand side of (4.3) can be neglected for the 
lowest-order solutions. This set of equations has been solved approximately by a 
singular perturbation method for a linear temperature distribution on the top and 
bottom boundaries by Quon (1980), and for a sinusoidal temperature distribution on 
the bottom by Daniels (1976). The results are as follows: the heat transfer is by 
conduction and the temperature field generates an azimuthal velocity because of the 
thermal-wind balance. Along the top and bottom boundaries are Ekman layers and 
along the sidewalls are ,?d Stewartaon-Proudman layers. Because of the insulated 
boundaries, the azimuthal velocity generated by the thermal wind balance satisfies 
the boundary conditions on the sidewalls automatically, i.e. w = 0 at x = 0 , l .  
Consequently, in the Ef layers Y only acquires an O(B) strength which is insufficient 
to support the Ekman transport, which is O(a) .  The communication between the 
upper and lower Ekman layer is forced through the interior by Ekman suction (for 
details see Daniels 1976; Quon 1980). Note that it is not necessary to introduce an 

j: w(z,z)dz = 0 at x = 0, l  

layer for this problem because 

(Hunter 1967 ; Daniels 1976). 
As heating increases, i.e. as increases from infinitesimal to some larger value, the 

linearized advective term becomes important in (4.3), i.e. with T replaced by T,, the 
conduction temperature, on the left-hand side. We can eliminate T and w in 
(4.1 k(4.3) to form a side-boundary-layer equation: 

(4.4a) 

where f = E-fx  is the stretched coordinate, ,?d being the boundary lengthscale, and 
aT,/& the vertical temperature gradient on the vertical wall (see D & S). 

If aT,/az is zero, i.e. if the fluid is homogeneous (Stewartson 1957), or if the 
isotherms are nearly vertical on the sidewalls, such as in the conventional rotating 



240 C. Quon 

annulus problem which has the sidewall temperature kept constant (Robinson 1959 ; 
Hunter 1967), or, if p is infinitesimal so that the second term can be neglected as in 
Daniels (1976) and Quon (1980), ( 4 . 4 ~ )  represents the classical a Stewartson- 
Proudman layer. If aT,/az  is positive, the solution for ( 4 . 4 ~ )  is still the Stewartson- 
Proudman layer which decays rapidly with distance from the sidewall. Physically, 
a positive aT,/az means a gravitationally stable thermal stratification which damps 
any vertical motion. The crux of the problem lies in the fact that in the warm side 
of fluid cavity, aT,/az  is negative, and hence thermally unstable. D & S have dealt 
with this particular situation very thoroughly. We shall summarize some of their 
results so that we can on the one hand interpret the numerical solutions more readily, 
and on the other hand identify and assess the transient and nonlinear phenomena 
that these authors had not been able to include in their linear and weakly nonlinear 
theories. 

(i) If we define h = q9E-j and set aT,/az = -C, C being a positive constant, then 
( 4 . 4 ~ )  becomes 

Y6,-hcY,,+ Yzz = 0. (4.4b) 

Recall from (2.8b) that an internal Rayleigh number can be defined as 

If we let laT,/azl = C, and 1 = a, then 

Ra, = u ~ E - ~ C E ~  = uPE-fC = hC. 

Therefore hC in (4.4b) is the internal Rayleigh number Ru,. D & S found the critical 
Rayleigh number for a vertical wavenumber n when C is assumed to be a constant : 

(4.5) Ru,(n) = 3 x &(nn)t, n = 1,2,3,  ... . 
If RU, < Ru,(l), the solution decays into the interior. However, if Rui > Ra,(l), 

the solution becomes spatially oscillatory for large 6, i.e. in the interior of the fluid 
cavity, and the boundary layer approach is no longer valid. 

= -C(z), whose absolute magnitude decreases as z ap- 
proaches from the sidewall so as to reflect the structure of the boundary tempera- 
ture (T = ; cosnx),  D & S analysed (4.1)-(4.3) by series expansion over the whole 
cavity (2)s. boundary-layer analysis of (4.4b) as given above). Instead of (4.5), they 
found the critical Rayleigh number for a vertical wavenumber n to be 

(ii) Assuming 

Ra,(n) = 8.6956n!Td, n = 1,2 ,3  ..., (4.6) 

where Tu = is the Taylor number (note that this Ra,(n) is essentially the same 
as that given in (4.5) except that here it is based on the lengthscale L instead of 
(2E)f L).  If Ra, = hC(x) is greater than Ra,(n), the solutions are oscillatory in the form 
of cells with a vertical wave number n, and of width O(&). Since C ( x )  is assumed to 
decrease with distance from the sidewall, cellular motion will cease to exist where 
Ru, becomes less than critical. C ( x )  therefore acts as a filter for the vertical wave- 
number n. Cells with the smallest n penetrate furthest into the interior, because 
Ru,(n) decreases with ni and Rai decreases with C(z), as x increases. It is interesting 
to note that, as pointed out by D & S, Ra,(l) is the same as that for B6nard in- 
stability in a rotating viscous fluid derived by Chandrasekhar (1961, p. 95) as Tu+ 00, 

e.g. for Tu = 1013, Ru,( 1) = 4.038 x lo9 and that according to Chandrasekhar is 
4.037 x lo9. 
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(iii) If aT,/az = -C(x ,  z ) ,  i.e. the temperature gradient being allowed to vary with 
both x and z, the task of finding a critical Rayleigh number is considerably more 
difficult. D & S had to evaluate eigenvalues numerically in order to find the corre- 
sponding critical Rayleigh numbers. The general concept for (ii) still holds. However, 
the linear theory yields results whose denominator becomes zero for certain discrete 
frequencies. D & S identify these as resonant frequencies of the cavity. 

(iv) D 6 S also developed a weakly nonlinear theory that includes the temporal 
and nonlinear terms in the momentum equations. The resonance in the linear theory 
was removed by a nonlinear effect. The weakly nonlinear theory was then carried 
over for a supercritical Rayleigh number O(E-') beyond Ra,(n) in (4.6). The stability 
of the flow at supercriticel Rayleigh number was investigated. 

Though D & S provide a great deal of insight on the flows in the system as a whole, 
the solutions are far too complex for detailed comparison with numerical or 
experimental results. These analyses themselves also raise a variety of questions. 
Perhaps the most important ones are the questions of possible bifurcation of the 
solutions, and the nature of their instability. As the authors have noted, it is not clear 
after crossing over the critical Rayleigh number to a supercritical value whether the 
instability is an exchange instability in the sense that a new state will emerge, or 
catastrophic instability from which the ensuing motion is turbulent. Furthermore, 
would the solutions bifurcate in parameter space and/or in time ? What are the truly 
nonlinear states? What are the transient states? Do steady states exist for certain 
parameter range 1 

Having only a limited number of solutions to discuss below, we shall only attempt 
to provide partial answers to some of these questions. For example, organized flows 
(rather than turbulent flows) do exist in the highly nonlinear regime. The transition 
from initially unstable states to final steady states seems to be orderly. The serious 
question of the effect of the third space dimension on the flows cannot be dealt with 
here. 

In  the rest of the paper, we shall present the results in two parts: @5-8 for steady 
and quasi-steady-states, which includes an analysis on a viscous non-diffusive 
boundary layer in the Appendix; and $9 for transient states, which includes the onset 
of instabilities. 

5. Steady and quasi-steady states 
The contour maps of the steady and quasi-steady states of all five cases are grouped 

in figure 3 for ease of comparison. The top row depicts the isotherms, the middle row 
the stream functions, and the bottom row, the zonal (azimuthal) velocities. Starting 
from the column at the extreme left, the maps become less symmetric about the 
vertical centreline as one proceeds towards the right. The asymmetry of the contour 
lines increases with the severity of the advective effect on temperature distributions 
as /3 becomes larger. However, in spite of the apparent differences between the 
different cases, one can make certain common dynamical inferences from them. 

When E is small, the viscous terms in (2.1)-(2.3) are negligible in the interior region 
where geostrophy holds at steady state (this is true for all the five sets of parameters 
under study here). Infinitesimal E would confine the Ekman boundary layer, being 
O ( G )  in thickness, to very small regions near the upper and lower boundaries. In the 
interior, geostrophy implies a thermal wind balance, i.e. l3vla.z = /3aT/ax, and 
aY/az = 0. Consequently, if there is any meridional flow in the interior of the fluid 
at all, i.e. Y = Y ( x )  + constant, it  must arise from Ekman suction. The interior 
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meridional flow would be O ( a )  smaller than the Ekman layer velocities; the zonal 
velocity in the interior is characterized by a vertical shear whose strength is 
proportional to the local horizontal temperature gradient. The structure of the side 
boundary layers, however, varies with /I. In order to discuss the flow fields and 
temperature distribution in greater detail, we shall divide the five cases into three 
groups: group A consists of cases 1 and 2, which are essentially linear; group B 
contains case 3, which is weakly nonlinear; and cases 4 and 5 constitute group C, 
which is highly nonlinear. 

A Linear heat transfer, m e  1, /3 = 0.001, and case 2,  /3 = 0.005 
The stream function Y and zonal velocity v for both cases 1 and 2 are almost 

symmetric about the vertical centreline of the cavity, while the temperature distri- 
butions, which are the driving force of the flows, are nearly antisymmetric for both 
cases (see figure 3a, b). The slight asymmetry in the isotherms indicates that thermal 
convection begins to play a minor role in heat transfer in the interior of these two 
systems. (Note that the contour intervals of temperature for case 1 and case 5 are 
0.05 instead of 0.10 as in all the other cases.) On the whole, conduction is the dominant 
mechanism of heat transfer for both cases. Hence the steady states of both these cases 
can be reasonably well described by the linear theory. In the interior, the vertical 
shear in the zonal velocity, being controlled by the horizontal temperature gradient, 
is stronger at the bottom than at the top. The Ekman layers bring both the meridional 
and zonal flows in the interior down to zero to meet the boundary conditions on the 
top and bottom boundaries. Note that the Ekman-layer thickness of case 1 should 
be exactly twice that of case 2 because the Ekman number is exactly 4 times as large. 
The side layers are passive for infinitesimal values of 8. The meridional circulation 
essentially consists of a single cell, upwelling in the left (warm) half and downwelling 
in the right (cold) half of the cavity. There is no cross-cavity flow in the interior, i.e. 
streamlines are almost vertical. As shown in table 1, the zonal velocity v maximum 
(near the bottom) is higher than the absolute v minimum by 20 yo, although the linear 
theory predicts equal strength. We must, however, keep in mind that the theory is 
for r/3 = 0. In spite of the similarity in the final steady states, case 1 and case 2 differ 
markedly in their transient states, as we shall describe later. 

B Weakly nonlinear heat transfer, case 3,  /3 = 0.02 
Of the five cases studied here, only case 3 can sustain cellular motion near the warm 

vertical boundary after the computation has reached steady state. An inspection of 
figure 3 (c) indicates that the cellular circulation occupies a region that is thermally 
unstable, approximately of the total cavity in the extreme left (also shown in 
figure 5) .  The vertical wavenumber is unity and cell width is almost exactly (2E):, 
(or fi as defined by D & S). According to the linear theory, boundary cells exist 
only if the internal Rayleigh number is greater than Bu,(n) = 8.6956~ 
(nn)tTaf = 1.091 x 106 for n = 1. The best numerical estimate of the vertical tempera- 
ture gradient at the wall is AT/Az = -0.103 at z = 0.5 (figure 4). Using this non- 
dimensional temperature gradient, the local Rayleigh number becomes 9.156 x lo6 
which is close to but still less than the theoretical critical Rayleigh number. However, 
as we can see from figure 4 the vertical temperature gradient is a variable function 
of z. For case 3, the extreme value for A T / h  is about -0.50. We can therefore use 
D & S’s theory only as a guide. The exact criterion for the instability that creates 
the cells cannot be ascertained from the numerical solutions given here. In  the rest 
of the cavity, the flows are geostrophically balanced. The positive isotherms have 
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FIQURE 4. Vertical distribution of temperature on the well at 2 = 0 for the five cases. 

been advected much further to the right and the negative isotherms much further 
down towards the bottom boundary than case 2. Near the vertical boundary on the 
left, the upwelling and downwelling of the cellular motion have visibly modified the 
isotherms (figure 3c). Advection and diffusion are very delicately balanced to 
maintain a negative vertical temperature gradient large enough to sustain the cells. 
While the thermal wind (azimuthal velocity) has changed in accord with the 
temperature distribution in the interior, the zonal velocity has also responded to the 
cellular motion in the boundary region at the left as shown in figure 3 (c). 

Figure 5 shows a comparison of the horizontal distribution of various fields for 
case 1 and case 3 at two values of z. Specifically we see that: (i) by comparing 
figures 5(a and b), the vertical distributions of v and T are very similar in regions 
away from the left-hand side boundary a t  all levels; (ii) the horizontal distribution 
of T shows that while T ( x )  for case 1 changes sign at  x = t a t  both heights, T ( x )  for 
the upper level of case 3 remains positive for all x .  This indicates that for case 3, the 
fluid in the whole cavity has warmed up considerably in comparison with case 1. 
However, note that the functional shapes of T ( x )  remain very similar for both cases. 
Since av/az = /3aT/ax is the interior balance, some similarity is expected of the 
vertical shear of the zonal velocity in the interior. (iii) v ( x )  at both heights appears 
to be very different near the left boundary for the two cases. The oscillatory parts 
are in response to the convection cells. They asymptotically match onto the interior 
solution. (iv) w ( x )  are very different between the two cases: the w ( x )  for case 1 is 
antisymmetric about x = t .  For case 3, over the right-hand of the cavity down- 
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welling is apparent, and over this region w(x) is almost linear in z. The dominant 
feature of the vertical motion is the cellular circulation next to the left-hand boundary 
which is an order of magnitude larger than the downdraught in the interior. The three 
cells are almost equal in width, x (2E))  x 6.7 x The edge of the outer cell is at  
x x 3 x (2E))  x +of the cavity width. It is clear by comparing the isotherms of case 3 
and case 1 (figure 3 )  that we cannot consider the former as a perturbed state of the 
latter as the linear theory would require. Obviously, advection plays a very important 
role in the heat transfer of case 3. 

C Nonlinear heat transfer, case 4 ,  /3 = 0.20 and case 5 ,  /3 = 1.0 
These two cases are highly nonlinear. The meridional flows have reverted back to 

one-cell circulations as represented by Y in figures 3 ( d  and e ) .  For both cases 
downwelling spans the entire interior except for a narrow region next to the left-hand 
side boundary where a very strong boundary jet carries the entire upward mass 
transport of the cavity and where the fluid is almost isothermal. This boundary layer 
is nonlinear. We shall give a more detailed discussion in $7.  Over the entire interior, 
strong downwelling packs isotherms down to the bottom boundary. The upper part 
of the cavity is almost isothermal. Note that the meridional circulation is reminiscent 
of Stommel’s conjecture of the small sinking region of the oceans while the 
temperature distribution reminds one of the conventional thermocline theory 
(Needler 1967). Stern (1975) had discussed the hydrostatic equivalent of this problem 
in an attempt to elucidate the oceanic thermocline problem. 

Although the steady states of both cases appear to be quite similar, case 5 in fact 
is only quasi-steady. The lower left corner seems to remain active and thermally 
unstable. Inertial gravity waves emanate from this corner and propagate away and 
upward along the isotherms. Oscillations of low frequencies (possibly eigenfrequencies 
of the cavity) are excited and then get absorbed in the stable region. As viewed from 
a computer movie, the streamlines appear to vibrate like strings fixed at  both ends 
at some internal characteristic frequency. No steady state is attainable for case 5 
although case 4 has reached one. Figure 3 ( e )  represents only a snapshot of the flow 
in the interior. Further discussion on the time-dependent motion is given in $9. 

6. Comparison with an experiment 
Hignett et al. (1981) reported on a series of laboratory experiments of this problem. 

Although they have not reported on the transient flows, they have made substantial 
measurements of the temperature fields, and deduced interior flows with the help of 
some visual estimates of flow speeds at discrete locations in the fluid. Of these 
experiments one is particularly interesting to us because its parameters are almost 
the same as those of case 5 :  aspect ratio of container x 1, CT = 6.75 (2)s. lo), 
E = 1.55 x and Ra = 2.38 x lo8 (WK 4.44 x lo8). By Ra = CTPE-~,  
the thermal Rossby number for the laboratory experiment is 
/3 = Ra E2a-’ = 0.801 (us. 1 .O for case 5 ) .  The experiment also showed that the flows 
are axisymmetric for this set of parameters. This last attribute is particularly 
important because the computations are two-dimensional. In addition to these 
differences the laboratory experiment was carried out in an annulus with gap- 
to-inner-radius ratio = O(1) while that for the numerical experiment is zero, i.e. a 
narrow-gap approximation has been used. Furthermore, the imposed temperature at  
the bottom is sinusoidal for the numerical experiment, while that for the laboratory 
experiment is proportional to In r ,  because the temperature is generated by conduc- 

(ws. 1.5 x 
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tion in the radial direction. In spite of these differences the distributions of isotherms 
are very similar. In  the numerical experiment, the bulk of the interior is above 
0.80AT (non-dimensional T > 0.30) which is essentially what the laboratory results 
are. The vertical profiles of the temperature and horizontal velocities in the buoyant 
Ekman layer are very similar to those in the laboratory experiment (see figure 6a  
below). 

7. A viscous, non-diffusive boundary layer 
In  Table 2(a) we show the balance of terms in all the equations for the point at 

x = 0.0261 and z = 0.742, which is well within the B layer (cf. B = 0.0532). The 
lowest-order balances in the u-equation in row 1 and the w-equation in row 3 are 
essentially geostrophic, (p, = w+A,), and hydrostatic (p, = BT+A2), where A, and 
A2 are higher-order corrections. Furthermore, -A2 = Ew,, has been established in 
the w-equation. This balance gives a steady vertical velocity in the boundary layer. 
The balance between the advective terms in the T-equation in row 4 is almost exact. 
Hence the diffusion of heat is unimportant at steady state in the vertical boundary 
layer! In the u-equation, A, is an order-of-magnitude higher than Eu,,. The terms 
in the w-equation in row 2 are also grossly unbalanced. We are forced to conclude 
that the u- and w-equations have not yet reached steady state. This unsteadiness will 
be further discussed in $9. It is nevertheless apparent that we can assume the 
following approximate balances for steady state : 

(p,--v)-A, = EU,,, 

u = Ew,, + nonlinearity, 

(pz - BT) -A, = Ew,,, 

(uT),+ (wT), = 0. 

Based upon these balances, it will be useful to postulate, even if only crudely, an even 
simpler approximate dynamical balance to see whether it is possible to construct a 
stable and steady vertical boundary layer that reflects the numerical solution shown 
in figure 3 ( d ,  e). 

We shall start with the above equations without nonlinearity in the second 
equation. The neglect of the inertial terms in all the momentum equations and the 
diffusive term in the T-equation can be justified on the basis of large 6. Thus the fluid 
is considered to be viscous but non-diffusive in the boundary region. Combining the 
above equations, and replacing u by - Y, and w by Y, we have 

aw aT - = -+Ev4Y, 
az ax 

aYaT aYaT --- +--=o. aZ ax ax az 
The boundary conditions are 

and Y+ YI(o), W + W I ( O ) ,  in the interior, J 

(7.la) 

(7.lb) 

(7 .1~)  
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where YI(0) and vI(0) are the asymptotic values of Y and v, which are also the value 
of the interior solutions Y and v at  x = 0. In the Appendix we show that the highly 
nonlinear regime can indeed admit a steady and stable boundary-layer solution. 

8. The buoyant Ekman layer and the coefficients of heat transfer 
For the highly nonlinear case5, the upper part of the cavity is essentially 

isothermal (see figure 3e) ,  and the dynamical balance there at steady state is basically 
the Ekman-layer balance. However, near the bottom boundary, the heat transfer is 
expected to be advectivdiffusive, and the dynamical boundary layer to be a 
buoyant Ekman layer. 

Table 2 ( b )  shows the dynamical and thermal balances at the point x = 0.2942 and 
z = 0.0124, well within the Ekman layer (cf. ,?$ = 0.0125). Row 1 in table 2 (b) shows 
that the balance in the u-equation comprises the Coriolis force, the horizontal pressure 
gradient, and vertical diffusion. Row 3 shows that the primary contribution to the 
pressure distribution is from the temperature variation through the hydrostatic 
balance. Combining the u- and w-equations by eliminating p, we obtain the equation 
in row 5 which shows the buoyancy term BT, to be of comparable importance to the 
overall balance. The v-equation in row 2 and the combined equation in row 5 define 
a buoyant Ekman boundary layer as expected. Row 4 shows that the heat transfer 
is carried out by horizontal advection and vertical diffusion, with a substantial 
contribution from vertical advection. Therefore in the lower boundary region, the 
approximate description of the boundary layer is given by 

This set of equations is quite similar to (7.1), except that heat diffusion is important 
here. This additional term makes it much more difficult to find an approximate 
analytical solution. 

Figure 6 (a) shows the vertical profiles of the numerical solutions u, v and T in the 
buoyant Ekman layer at x = 0.1,0.5, and 0.9 (note the different scales of the different 
graphs). If we take the first zero of u inside the fluid as a measure of its thickness, 
this boundary layer is uniformly thick over the entire span of x. The v-profiles vary 
substantially at the three positions of x because the asymptotic conditions are 
different (vl in the interior). The temperature profiles are even more different at the 
three values of 2 because both the boundary conditions at z = 0 and the asymptotic 
conditions are different at different values of x. 

Figure 6 ( b )  shows the plot of the vertical temperature gradients at z = 0 as a 
function of the horizontal coordinate. The oscillatory parts reflect the influence of 
the cellular motion. The curve marked case 0 is a plot of the vertical temperature 
gradient of the theoretical conduction solution at z = 0. The integral 

vanishes because both the heat input and output are through the bottom boundary. 
For the numerical solutions, this integral never completely vanishes. For case 1, the 
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FIGURE 6. (a)  Vertical profiles of u, v and T of case5 in the bottom boundary layer at three 
horizontal positions. Note the change of scales. ( b )  Vertical temperature gradients of all five cctses 
at z = 0. Note the change of scales. The right-hand-side scale is for cases 4 and 5 (dashed lines). 

finite-difference summation of the temperature gradient a t  the bottom is close to zero. 
For the other cases, the differences between the positive and negative parts range 
from 2 % (case 1) to 15 % (case 5 ) .  The reasons for these discrepancies are twofold. 
(a) The finite-difference summations are in error because the variable grids in the 
horizontal direction makes it difficult to represent the integral accurately by simple 
summations (more accurate results are possible, e.g. by fitting the curves in figure 6 ( b )  
to Chebyshev polynomials, and then computing the integrals from these polynom- 
ials). (b) The positive part of this integral is always larger than the negative part, 
i.e. the heat input is always larger than the heat output. This, together with the 



Nonlinear response of rotating &id to differential heating from below 251 

~~~ ~ 

Case 1 2 3 4 5 

Nu 1.06 1.32 2.37 7.91 16.58 
- 

TABLE 3. The averaged Nusaelt numbers 

integral of the temperature variant (not shown), which are still increasing slowly 
with time, indicate that the systems have not yet reached thermal equilibrium 
completely. The final stages of development are largely by diffusion, and are very 
slow processes. 

To compute the coefficients of heat transfer, or the Nusselt numbers, we have taken 
the positive (or negative) part of the integral for case 0 as the basic conductive heat 
transfer, and designated it by I,. Next we computed the average of the absolute 
values of the positive and negative parts of the five integrals and designate them by 
I j , j  = 1-5 representing the 5 cases. The ratios I , /I ,  = Nu, are the Nusselt numbers, 
which are listed in table 3. Case 5,  which is a very advective case, has Nu, = 16.58. 
This indicates that the heat transfer rate of case 5 is 16 times that of the conduction 
state. Note that because of 15 yo maximum error discussed above, there is a maximum 
7.5 % uncertainty in the mean Nusselt numbers. 

9. The transient states 
The transient states of all five cases provide a substantial amount of information 

that can lead to a better understanding of the steady states. The transients are 
sometimes extremely volatile, and, as expected, are quite different for the various 
ranges of the thermal Rossby number. For clarity, we shall first discuss them 
separately and then compare them. All computations start with solid-body rotation 
(i.e. zero velocity relative to the rotating frame of reference) and a t  reference 
temperature (i.e. T = 0). Heat conduction initially sets up similar temperature 
profiles adjacent to the bottom boundary for all cases. However, how fast the velocity 
fields develop and how the instabilities come about depend on /l. 

Case 1 
The transient state of case 1 is very benign (not shown). Since the flows hardly 

affect the temperature field even at  steady state, we shall discuss the temperature 
and flow fields independently although they always develop concurrently. As the 
isotherms advance into the interior from the bottom boundary by conduction, a 
one-cell circulation develops. At first, this cell adheres to the bottom boundary and 
is dominated by a buoyant Ekman layer because heat has not yet had time to diffuse 
into the interior. Gradually the cell spreads into the interior with the isotherms. As 
the horizontal temperature gradient becomes stronger in the interior, the thermal 
wind develops while the Ekman layers strengthen to help the interior flow fields to 
meet the upper and lower boundary conditions. Although dynamically the effects of 
both buoyancy and rotation are experienced by the fluid immediately, the thermal 
effect has to take a slight lead in order to initiate the motion. An important 
observation for case 1 is the following. Although one half of the cavity is gravi- 
tationally unstable throughout the experiment, at  no time has the Rayleigh 

9 FLX 181 
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FIGURE 7. Time-dependent development of case 2. Time in rotations. 

number reached the critical value, and hence no cellular instability ever occurs 
during the experiment. 

Case 2 
Although the steady states of case 2 are very similar to those of case 1, the transient 

states are markedly different. As table 1 shows, the external Rayleigh number of 
case 2 (in fact of all cases except case 1) is larger than the critical Rayleigh number 
Ru,(l), and hence case 2 is expected to undergo cellular instability. However, we 
must recall that the total temperature difference, A T  is used to define the external 
Rayleigh number while at  no time is the temperature between the top and bottom 
boundary larger than +AT. Therefore the effective Rayleigh number is halved, or 
Ru = 1.110 x lo6 which is only slightly larger than Ru,(l) = 1.091 x lo6. Because the 
vertical temperature distribution is not linear and because advection, though slight, 
has further reduced the total vertical temperature difference, the effective Rayleigh 
number at  steady state is in fact less than critical. 

The transient states, however, do exhibit instability. Figure 7 (a) shows that the 
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U 

FIQURE 8. Time-dependent development of case 3. Time in rotations. 

flows are not yet unstable at rotation 48.70. However, approximately 146 rotations 
after the start of heating (not shown, 1 rotation = 4n dimensionless time) instability 
sets in; 76 rotations later, four cells have fully developed. At the peak of total 
integrated kinetic energy (not shown), approximately 438 rotations after the start 
of heating, there are five discernible tall cells of width = O(2E)i as shown in figure 7 (b) .  
They produce large-amplitude waves on the isotherms in the unstable half of the 
cavity as shown in the T-frames of figure 7 (b, c), the temperature frames. The motion 
in the right-hand half of the cavity is negligibly small, and the temperature maintains 
its conduction profile. Although cellular advection becomes visibly important in the 
heat transfer in the left half of the cavity, the perturbed isotherms continue to move 
upward by conduction. The vertical temperature gradient thus weakens as the 
isotherms spread. In  the meantime, starting from the interior of the cavity all the 
cells are diminishing in strength and are quickly dissolving themselves, starting from 
the outer cells. Eventually the vertical temperature gradient become too small to 
sustain any cellular motion. The cells disappear altogether, and a one-cell steady 
state is then enhanced. The final steady state becomes very similar to that of case 1 

9-2 
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as shown in figure 3 ( b ) .  The spatial oscillations persist for more than 1050 rotations 
before they completely disappear. 

we 
recognize that the D & S theory should be appropriate. The cellular instabilities of 
this case develop only after the side boundary layers have been well established. As 
we shall see later, when /3 is sufficiently large instability can occur much earlier. The 
special characteristics of this transient state are the following: ( a )  instability sets in 
only after the side boundary layers have developed and only after the rotation has 
established its effect; ( b )  over a duration of 1050 rotations five cells have developed 
and decayed; (c) the steady states revert to a one-cell circulation similar to those of 
case 1. An in-depth discussion of the instability and temporal development of this 
case is given in Quon (1986). 

Case 3 
As pointed out above, this is the only case that maintains permanent steady cells. 

The transient state undergoes cellular convection very early on. The best estimate 
shows that cellular motion starts about 9.5 rotations after the heating start. 

Unlike case 2, whose cell developments are very slow, and whose cellular motion 
does not affect the isotherms immediately, case 3 undergoes very rapid changes in 
all fields as soon as the cellular instability has taken place. Isotherms very rapidly 
acquire a spiky appearance in the unstable region due to advection by the cells as 
shown in figure 8 (a) .  Initially very small cells, whose lengthscale is of the thickness 
of the thermal layer, form at the lower left corner, and spread horizontally to the 
right. Although they also penetrate upward, they have only one cell in the vertical. 
The cells become taller but remain thin. The cellular activities reach their maximum 
approximately at  rotation 50, when there are six thin vertical cells reaching the top 
boundary, occupying almost the entire unstable half of the cavity, figure 8(a, b ) .  At 
steady state, there are only three tall cells spanning over an area about $ the cavity 
as shown in figure 3(c). The outer cell is rather weak. 

The main differences between the transient states of case2 and 3 are in the 
development of the isotherms. For case 2, the cells only perturb the isotherms. The 
perturbations deform the isotherms in the unstable half of the cavity into 
configurations of vibrating strings. These perturbations are relatively small in 
comparison with the values of the isotherms themselves, figure 7 ( b ) .  For case 3, 
however, the cellular motion has produced a finite-amplitude effect on the isotherms. 
Advection of the cells makes the isotherms spiky with their upward motion, and 
compresses the isotherms with their downward motion, figure 8 ( b ,  c ) ,  although at  
steady state diffusion has smoothed out the isotherms as shown in figure 3(c). The 
cells are basically the spatial oscillations postulated by D t S. 

Case 4 and case 5 
As described above, cases 1-3 essentially belong to the conductive regime. Their 

flows either undergo no instability as case 1, transient spatial oscillations as case 2, 
or permanent steady spatial oscillations as case 3. All these cases are within the 
parameter range considered by D 8z S. Their linear and weakly nonlinear theories can 
be applied to explain some of these flow phenomena to a greater or lesser extent. 

Cases 4 and 5 are highly nonlinear. Their transient states go through two very 
distinct unstable stages before reaching steady state or quasi-steady state. Since the 
transient states of both cases are quite similar, we shall only describe those of case 5. 

Before describing the two-dimensional transient flows, we shall first study 

Recalling that this case has only an infinitesimal value for c/3 ( =  5 x 
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FIQURE 9. Time-dependent development of (a) w and ( b )  T of case 5 at x = 1.434 x z & 

figure 9(a and b) ,  which respectively are plots of the vertical velocity w and 
temperature T against time-steps of computation at x = 1.434 x a 
point in the unstable corner. Figure 9(a) shows that up to time-step 150, about half 
a rotation after the start of the computation, the vertical velocity is infinitesimal. 
Between time-steps 150 and 200, the velocity grows linearly with time. This is the 
duration of linear instability. From time-step 200 onward, the velocity grows 
exponentially. Beyond time-step 300, the velocity becomes irregular. 

Figure 9 (a) shows a similar growth for the temperature. Up to time-step 200, the 
temperature increases smoothly, predominantly by diffusion. At time-step 200, the 
abrupt increase in temperature indicates that advection has become an important 
transport process (at least locally). By time-step 300, almost exactly one rotation 
after start, the temperature has reached a maximum value and starts to oscillate with 
irregular amplitude and period. Beyond time-step 450, the oscillations of w and T 
are almost coherent. This indicates that advection dominates heat transfer beyond 
time-step 450 at this particular location. 

Figure 10 (a) shows the two-dimensional development of instability 2.5 rotations 

z x 
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(b) 21.65Q 

FIQURE 10. Time-dependent development of case 5, towards quasi-steady state. Time in 
rotations. 

after the computation had started (1 rotation = 4nr dimensionless time). After 
heating is switched on, the initial heat transfer is by conduction. Within half a 
rotation, while the thermal layer is still very thin, z 0.02 dimensionless units (& of 
the cavity width), unstable cells of the lengthscale of the thermal-layer thickness start 
to appear, without disturbing the isotherms. This is the first stage of instability at 
time-step 200 (0.6452) as shown in figure 9 (a, b ) .  Because this stage of instability takes 
place about half a rotation after the heating start, it is safe to assert that this stage 
of instability is totally thermally controlled (i.e. rotation has not played an effective 
roll). Howard (1966) had made an estimate of the effective Rayleigh number at  the 
onset of thermal instability for a deep layer of fluid without rotation. His critical 
Rayleigh number is about 2500, which is close to our estimate here. A detailed 
discussion of the onset of instability is given in a subsquent paper (Quon 1987). 

The first stage of instability is confined to the bottom boundary layer and lasts 
less than one rotation. The next stage of instability entails cellular penetration into 
the upper part of the unstable half of the cavity in the form of breaking thermals. 
Isolated thermals start to form and to break off the thermal layer. The penetrative 
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processes spread towards the fluid interior from the vertical boundary, and take on 
multiple vertical wavenumbers. Initially the number of vertical cells decreases with 
distance from the boundary (figure 10a, Y-frame). This reflects the fact that the 
Rayleigh numbers decrease with x, and according to D & S’s theory, the largest 
number of vertical cells should occur where the largest Rayleigh number is, which 
is next to the vertical boundary. At  the peak of this stage of instability, the whole 
left-hand side of the cavity is filled with almost randomly distributed cells. However 
the vertical stacks of cells are recognizable as shown in figure 10 (a). The aspect ratios 
of the cells range from 1 to 2. Note that at this stage, while the left-hand side of the 
cavity is almost turbulent, the thermally stable half of the cavity has only weak and 
orderly motion. The evolution from the peak of almost chaotic motion to quasi-steady 
state is depicted in figure 10(b, c). It is quite obvious that the cells coalesce in the 
vertical into a few tall and thin cells as shown in the stream function of figure lO(c). 
The isotherms become almost vertical in the left half of the cavity. In the meantime 
the rest of the fluid has organized into strong Ekman layers near the top and bottom 
boundaries which create Ekman suction in the interior. Since the heat transfer of this 
case is extremely nonlinear, the left-hand side of the cavity eventually becomes 
almost isothermal owing to vigorous advection. Consequently the vertical tempera- 
ture gradient becomes very weak, and the Rayleigh number becomes very small. A t  
steady state or quasi-steady state, the Rayleigh number is no longer strong enough 
to sustain cellular motion (figure 3e). 

To summarize, we have observed that the transient states are much more sensitive 
to the variation of /3 than the steady states. Thus case 1 and case 2 may have very 
similar steady states, but their approaches to these states differ markedly from 
each other. Case 2 and case 3 both have transient cellular states, but the cells are 
initiated under very different conditions. For case 2, cellular motions appear about 
146 rotations after heating start. It appears that the I$ side layer has already fully 
developed when these cells form. Although these cells can persist for a very long time, 
over 1050 rotations they have finally dissipated, and in case 2 reach a steady state 
similar to that of case 1, a one-cell circulation. On the other hand, the cellular 
instability for case 3 takes place quite early in the computation, about 9.5 rotations 
after the heating start. By rotation 50, the cells have fully developed into full 
strength. Although the number of cells had decreased from five at the peak of activity 
to three at steady state, the Rayleigh number at steady state was sufficiently large 
to maintain three boundary cells permanently. It should be noted that throughout 
the whole transient development, cells only have vertical wavenumber unity for 
case 3. In other words, according to linear theory, the Rayleigh number is never large 
enough to support a vertical wavenumber greater than unity. 

At yet higher values of /3 such as those of cases 4 and 5, thermal instability starts 
very early, within half of a rotation after the heating start. Individual thermals 
randomly form and rapidly detach from the thermal layer to penetrate into the fluid 
immediately above. The cellular motions become very vigorous within the entire 
unstable side of the cavity. These cells have dominant vertical wavenumbers of 4 and 
5. The most amazing phenomenon is that while almost turbulent motion is displayed 
in the thermally unstable half of the cavity, the adjacent half to the right remains 
quiescent with very orderly motion. Through vigorous advection and ever-present 
diffusion, the unstable region eventually becomes almost isothermal, and thus the 
Rayleigh number becomes too small to sustain any cellular motion. A one-cell 
circulation prevails in a steady or quasi-steady state. It appears that because the 
heating is so strong for both cases 4 and 5, instability takes place almost immediately 
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after the heat is switched on. This happens before the side layer is formed, or before 
the rotational effect has been firmly established, although rotation plays a strong 
role later in the development. There are also differences between case 4 and case 5. 
The former attains a steady state, while the latter undergoes very persistent, low- 
amplitude oscillations which have emanated from the unstable lower corner and 
propagated throughout the whole cavity. 

We have only been able to present the bare essentials of the transient flows here. 
The rich and complex motion can be fully appreciated only through viewing a 
computer movie. 

10. Discussion 
We have studied the transient states, steady states and quasi-steady states of a 

rotating fluid in a rigidly bounded square which is differentially heated on the bottom 
boundary for a wide range of thermal Rossby numbers. For low thermal Rossby 
number, the numerical results confirm the linear and weakly nonlinear theories of 
D & S. At supercritical Rayleigh number, steady states exist, although these steady 
states differ markedly from one another, depending on the thermal Rossby number. 
The existence of these final states shows that the instability is an exchange instability 
rather than a catastrophic one. This has answered one of the important questions 
raised in D & S’s analyses. Another question concerning bifurcation of the solutions 
has not been answered. Although there are jumps in the solutions (say from BBnard 
instability to multiple-vertical-wavenumber instability to  a one-cell steady state), it  
is not clear whether there are other possible states. It is felt that other states are 
unlikely if computations are limited to  two space dimensions. Another observation 
in this study is that although the D & S theories cannot describe transient states in 
detail, they have provided some valuable insight into the multiple-vertical- 
wavenumber instability a t  different stages of the temporal development. 

Daniels’s (1976) question of whether i t  is necessary to have slightly conducting 
sidewalls in order to  maintain steady flows has been answered in the negative. Cases 
1 4  all have steady states with perfectly insulated sidewalls (apart from numerical 
truncation error). However, his conjecture on flows a t  high thermal Rossby number 
has been confirmed by the numerical results. D & S also raised doubt on the 
possibility of solving this problem numerically because the boundary layers are very 
thin, and therefore very hard to resolve. Although large computing resources are 
required, i t  is possible to  resolve the boundary layers by coordinate transformation, 
a t  least for the two-dimensional problem. A three-dimensional problem would 
increase the resource requirement by two orders of magnitude. 

Finally, i t  is worth pointing out that  there is a common misconception that one 
should expect a symmetric flow in this problem because the imposed temperature on 
the bottom boundary is antisymmetric. While this is true for the conductive regime, 
i t  is not an adequate condition for symmetric flows in the convective regime. I n  order 
to have some kind of symmetry, say centro-symmetry or centro-antisymmetry about 
the centre of the cavity (Gill 1966), in all the steady fields in a convection problem, 
one must impose the same temperature (symmetric conditions, Quon 1977, 1980), or 
reverse temperature (antisymmetric conditions, Quon 1972, 1983a, b )  on the opposite 
boundaries, although the temperatures themselves need not assume any specific 
functional form along the boundaries. This holds true for systems with or without 
rotation. 
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Appendix 
Starting from ( 7 . l c ) ,  we observe that: 

T = F(y3, (A 1 )  

where F( u) is an arbitrary function of Y. Combining ( 7 . l a ,  b), and (A 1) we have 

Since F( Y) is an arbitrary function of Y,  (A 2) can be nonlinear. In  order to make 
(A 2 )  analytically tractable so that we can gain some insight into the nature of the 
boundary layer, we consider T as a linear function of Y,  i.e. 

T = F(u) = 2AY+B, (A 3) 

where A and B are arbitrary constants. Note that by reducing the temperature 
equation from second- to first-order in (7.1 c), we are able to apply only one boundary 
condition to the temperature in the x- and one in the z-direction. We shall be able 
to determine only A or B because we have only one boundary condition in x for the 
temperature at our disposal when we consider the boundary-layer equations. 

Substituting (A 3) into (A 2), we obtain 

By scaling x = BE, (A 4 a )  becomes 

In order that all terms on the left-hand side play equal roles, we assume A = O(1). 
By replacing x with the stretched coordinate 6 in (7.la, b), we have 

We note that T and Y must be O(Efv) in order for all terms in these equations to 
balance one another. For convenience we define 

T =  Be, Y = I&$, 
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where 0, Q = O(w), and Q still satisfies (A 4b)  which admits solutions of the form 
W 

Q = Qo + x Qm eAmE sin (mnz). 
m-1 

For each m, we have 
A6, + 2AAk - (mx)2 = 0. 

There are 6 roots for A,. In order to have boundary-layer-type solutions, we are 
looking for three roots with negative real parts so that the solutions will be bounded 
and approach an asymptotic value Qo as E-. a. Three roots are sufficient to give three 
free constants so that the first three boundary conditions in (7.2) are satisfied. This 
may impose a condition on A. From (A 7), we find 

(A&*) = -Af(A2+(mn)2)i, (A 8) 

where the right-hand side is real because A and m are real. Hence A: are real. 
When Ah > 0, one of the roots of A, has positive real part, and two have negative 

real parts. When Ah < 0, one root has negative real part and two have positive real 
parts. Therefore regardless of the value of A ,  we can alwaysjnd three roots of A in (A 7) 
with negative real parts to form a boundary 1ayer.that can satisfy all boundary 
conditions in (7.2). The boundary layer is of the form 

W 

Q = Qo+ Z sin(mnz) (Qm, eAmvlE+Qm, eAmsgE+Qm,3 eAmn,sf;). (A 9) 
m-1 

Now if we let = A + [A2 + ( m ~ ) ~ ? ,  and c7: = -A + [A2 + ( m ~ ) ~ ? ,  then 

Since Q is real, without loss of generality we can rewrite (A 9) as 
Am. 1 = -GI, Am, 2 = -(@2) (1-i2/3),Am,3 = - (g2) (1 +i2/3), where i = 2/-1. 

4 3  
W 

Q = Qo-  Z sin(mnz) Cme-G~E+e-iGn~ Dm sinTG2E+Em 
m-1 

W 

w = wo+ E mx cos (mm) 
m-1 

, (A10b) 

where C,, D,, Em are real constants, and #o and wo are asymptotic values of Q and 
v as [+ co. Applying (7.2) to (A lo), we have 

I 
W 

Z sin (mxz) (Cm+E,) = 9, by 9 = 0 at 6 = 0, 
m-1 

I G 
2'Cm-2/3D,+E, = O  

(72 
W 

Z mn cos (mm)  
m-1 

=-wo b y v = O  att ;=O.] 

It is clear that unless Q, and wo are known, we cannot evaluate C,, D, and Em. 
Therefore for definiteness, let us assume Qo = #'(O) = constant and wo = v'(0, z ) ,  
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which is some function of z as the thermal wind balance in the interior would require. 
Thus we have 

W0 
(2n+l)x 

Cn+En = 

wheren=+(m-l) ,n=0,1,2 ,... and 

If we further assume that we can write 

we have 

00 

wI(0,z) = - z Gn cos (2n+ 1) Itz, 
fl-0 

and 

(A 13a) 

Cne-GIE+etGsE 

Now we can choose an appropriate boundary condition for T. Since 4E = 0 at 
6 = 0, from (A 3) Ts = BB,  = 0 is automatically satisfied. If we apply the asymptotic 
condition that T+TI(O), as $+ 00, then 

T'(0) = 2A,?$#, + B, or B = T'(0) - 2AB4,  = constant. 

Hence 
00 

T = T1(0)-2Al$ E sin(2n+l)xz 
n-o 

The constant A in (A 13d) cannot be determined, although we know that A = O(1). 
Hence the second term on the right-hand side of (A 13d) is O(l$)  smaller than the 
interior temperature TI which is O(1). 

Despite the fact that we have made a number of assumptions to arrive at these 
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boundary-layer solutions, they bear some quantitative resemblance to the numerical 
solutions. For example, if T'(0) = 0.5, the maximum possible temperature of the 
system, the boundary-layer correction is O(B) = 0.05, about 10 yo of T'(0). Figure 4 
shows that T(0, z )  % 0.45 for case 5. By w = a!P/ax = aqb/at, we have w = O(v(O)),  and 
the e-folding distance of the boundary layer is O ( a ) .  Qualitatively both T and Y have 
extrema a t  z = 4, while ZI has a zero somewhere between z = 0 and 1. All these are 
borne out by the numerical solutions if we compare them with figure 3. 

This boundary layer is similar to  that of the linear theory given in ( 4 . 4 ~ )  in some 
respects ; both have lengthscale &. However, in the linear theory boundary-layer 
solutions are possible only if the internal Rayleigh number is less than critical. But 
there is no such restriction here because strong advection makes the boundary region 
almost isothermal, and is always positive in the interior. Therefore a 
boundary-layer solution always exists under the present assumptions. This aspect of 
the solution is indeed what we have intended to  establish. We cannot ascertain that 
i t  must exist because of the assumptions we have made, although these assumptions 
are reasonable ones and are supported by the numerical solutions. 
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